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Abstract

This paper studies the structure of shift-invariant spaces. A characterization for the

univariate shift-invariant spaces of tempered distributions is given. In Lp case, an inclusive

relation in terms of Fourier transform is established.
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1. Introduction

This paper studies the structure of shift-invariant spaces generated by finitely
many compactly supported distributions.
A linear space S of distributions is shift-invariant if, for any fAS and any aAZs;

fð� � aÞAS:
The space SðRsÞ of rapidly decreasing functions is the set of all infinitely

differentiable functions t such that, for any polynomial pðxÞ and aAZs
þ;

jpðxÞ@atðxÞj-0; jxj-N:

The dual space S0ðRsÞ is the space of tempered distributions. Similarly,
SðZsÞDcðZsÞ consists of all sequences that decay faster than the reciprocal of any
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polynomial sequence, where cðZsÞ is the set of all complex valued sequences defined

on Zs: A sequence b is in S0ðZsÞ; the dual space of SðZsÞ; if and only if b is of
polynomial growth, i.e., there exists a polynomial p satisfying jbðaÞjpjpðaÞj; aAZs:
For a distribution f and a sequence bAcðZsÞ; the semi-convolution f*

0b is defined
by

f*
0b ¼

X
aAZs

bðaÞfð� � aÞ:

It is well defined in case either f is compactly supported or bAc0ðZsÞ; where c0ðZsÞ is
the subspace of finitely supported sequences in cðZsÞ: In both cases, it is clear that

f*
0bAD0ðRsÞ; the space of distributions on CN

0 ðRsÞ of compactly supported and

infinitely differentiable functions.
Throughout this paper we assume that F is a finite set consisting of

fjAS0ðRsÞ; j ¼ 1;y;m: We define the linear space S0ðFÞ as the smallest shift-

invariant space containing F; that is,

S0ðFÞ ¼
X

1pjpm

fj *
0bj: bjAc0ðZsÞ; 1pjpm

( )
:

For 1pppN; by LpðRsÞ we denote the Banach space of all complex valued

measurable functions on Rs such that jjf jjpoN; where

jjf jjp :¼
Z
Rs

jf ðxÞjp dx

� �1=p

; 1ppoN;

and jjf jj
N

is the essential supremum of f on Rs: The Fourier transform f̂; for
fAL1ðRsÞ; is defined by

f̂ðoÞ ¼
Z
Rs

f ðxÞe�ixo do; oARs:

The Fourier transform of a distribution in S0ðRsÞ is defined by duality. It is well
known that the Fourier transform of a compactly supported distribution can be
extended to an entire function of zACs:

For compactly supported distributions fjAS0ðRsÞ; j ¼ 1;y;m; the shift-

invariant space SðFÞDD0ðRsÞ is given by

SðFÞ ¼
X

1pjpm

fj *
0bj: bjAcðZsÞ; 1pjpm

( )
:

Further, if F consists of finitely many functions in LpðRsÞ; denote by SpðFÞ the

closure of S0ðFÞ in LpðRsÞ: It is the smallest closed shift-invariant space in LpðRsÞ
that contains F:
It is a meaningful problem, for a shift-invariant subspace SDSðFÞ; to characterize

the elements of S: The following result on this direction is due to de Boor et al. [2],
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which holds for any finite set FDL2ðRsÞ:

S2ðFÞ ¼ fAL2ðRsÞ: f̂ ¼
X

1pjpm

#fjaj; aj is 2pZs-periodic; 1pjpm

( )
: ð1:1Þ

The characterization (1.1) plays an important role in wavelet analysis as well as the
approximation order by S2ðFÞ; see [1–4] etc. In [6], Jia gave another proof of (1.1). It
was proved in [6] that, for FDLpðRsÞ;SðFÞ-LpðRsÞ is closed in LpðRsÞ and that

SðFÞ-L2ðRsÞ ¼ S2ðFÞ for FDL2ðRsÞ:
It is well known that, for any pA½1; 2
 and any function fALpðRsÞ; the Fourier

transform f̂ALp0 ðRsÞ; where p0 is the conjugate number of p; 1=p þ 1=p0 ¼ 1: The

analogue of the subspace in the right-hand side of (1.1) is defined as follows:

XpðFÞ ¼ fALpðRsÞ: f̂ ¼
X

1pjpm

#fjaj ; aj is 2pZs-periodic; 1pjpm

( )
: ð1:2Þ

In this paper, we are interested in the shift-invariant spaces in S0ðRsÞ and LpðRsÞ;
respectively. When F consists of compactly supported distributions in S0ðRsÞ; we
give a characterization in Section 2 for fAS0ðRsÞ by the coefficients
bjðaÞ; aAZs; 1pjpm; provided that either s ¼ 1 or the shifts of F are stable (see

below for the definition of stable). For FDLpðRsÞ; 1ppp2; consisting of compactly

supported functions, we establish in Section 3 that SðFÞ-LpðRsÞDXpðFÞ: As a by

product we present a proof of the equality SðFÞ-L2ðRsÞ ¼ S2ðFÞ for FDL2ðRsÞ:
There are two methods to describe the structure of shift-invariant spaces. Fourier

transforms of fj; 1pjpm; have been used extensively and mainly to characterize the

shift-invariant subspaces in L2ðRsÞ: Another method is to use semi-convolution. It
turns out that the semi-convolution is a powerful tool to deal with the non-L2 case as
well as L2 case. Our method is a combination of them.

2. Shift-invariant subspaces of tempered distributions

In this section we characterize the shift-invariant subspaces of S0ðRsÞ in terms of
coefficients in semi-convolution.
We first introduce some notions and results about the linear independence and

stability of the shifts of F: Let F ¼ ffjg1pjpm be a finite set consisting of compactly

supported distributions. The shifts of F are linearly independent (stable, respectively)
if for any bjAcðZsÞðcNðZsÞ; respectively), 1pjpm;X

1pjpm

X
aAZs

bjðaÞfjð� � aÞ ¼ 0 ) bjðaÞ ¼ 0; 1pjpm; aAZs: ð2:1Þ

Let F consist of finitely many compactly supported distributions fjAS0ðRsÞ;
1pjpm: The restriction of SðFÞ to the cube O ¼ ð�1; 1Þs is a finite dimensional

subspace of S0ðRsÞ: There exists a basis ck; 1pkpn; of SðFÞjO: For any bkAcðZsÞ;P
1pkpn ck *

0bk ¼ 0 if and only if bk ¼ 0; 1pkpn:
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Obviously, there exists m � n finitely supported sequences cjk; 1pjpm; 1pkpn;

such that for any aAZs

fjð� þ aÞjO ¼
X

1pkpn

cjkðaÞck: ð2:2Þ

Define the Laurent polynomials as

gjkðzÞ ¼
X
aAZs

cjkðaÞz�a; zAðC\f0gÞs; 1pjpm; 1pkpn; ð2:3Þ

and the matrix

GðzÞ ¼ ðgjkðzÞÞ1pjpm;1pkpn; zAðC\f0gÞs: ð2:4Þ

Recall from [7] that the linear independence (stability, respectively) of the shifts of

F is equivalent to the fact that, for any zAðC\f0gÞsðzATs; respectively) the matrix
GðzÞ has rank m:
The difference operator is a convenient tool. Given aAZs; the operator ta on cðZsÞ

is defined by taf ¼ f ð� þ aÞ; fAcðZsÞ: A Laurent polynomial pðzÞ ¼
P

a cðaÞza
induces a difference operator pðtÞ ¼

P
a cðaÞta:

Denote by V the set of all the distributions that have the following representation:
there exist some fkAcðZsÞ; 1pkpn; such that for all aAZs;

f ð� þ aÞjO ¼
X

1pkpn

fkðaÞck: ð2:5Þ

Clearly, SðFÞDV : Moreover, a distribution fAV with representation (2.5) belongs
to SðFÞ if and only if the systemX

1pjpm

gjkðtÞbj ¼ fk; 1pkpn ð2:6Þ

is solvable for bj; 1pjpm: The details are referred to, for example, [7].

Based on Toeplitz Theorem, Jia [5] characterized the solvability of (2.6) as follows.

Lemma 1 (Jia [5]). Assume that for any pair of ðj; bÞ; there are only finitely many pairs

of ðk; aÞ such that cjkða� bÞa0: Then the system of difference equations (2.6) is

solvable if and only if it satisfies that, for any Laurent polynomials qkðzÞ; 1pkpn;X
1pkpn

gjkqk ¼ 0 81pjpm )
X

1pkpn

qkðtÞfk ¼ 0: ð2:7Þ

Our first result is a characterization of fAV to be a distribution inS0ðRsÞ in terms
of its coefficient sequences fk; 1pkpn: Its proof is elementary and, therefore,
omitted.

Lemma 2. Let fAV be as given in (2.6) with the coefficients fkðaÞ; 1pkpn; aAZs:

Then fAS0ðRsÞ if and only if for any k; 1pkpn; fkAS0ðZsÞ:
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The following lemma is a well-known result.

Lemma 3. For any nonzero univariate Laurent polynomial qðzÞ and a sequence

gAS0ðZÞ; the difference equation qðtÞa ¼ g has solution aAS0ðZÞ: The solution is

unique if and only if qðzÞ has no zero on T:

Theorem 4. Assume that F ¼ ffjg1pjpm is a finite set of compactly supported

distributions in S0ðRsÞ: For univariate case, s ¼ 1; we have

SðFÞ-S0ðRsÞ ¼ f : f ¼
X

1pjpm

fj *
0bj; bjAS0ðZsÞ1pjpm

( )
: ð2:8Þ

Proof. It is clear that for any bjAS0ðZsÞ;
P

1pjpm fj *
0bjASðFÞ-S0ðRsÞ: Assume

now fASðFÞ-S0ðRsÞ: Then fAV : There exist coefficient sequences

fkAS0ðZÞ; 1pkpn; such that (2.5) holds. As we have known that, for such
fk; 1pkpn; the system of difference equations (2.6) is solvable for some
bj; 1pjpm: Therefore the implication relation (2.7) holds.

We shall appeal to the results for the decompositions of (univariate) polynomial

matrices to establish the solvability of (2.6) for bjAS0ðZÞ; 1pjpm: Recall that GðzÞ
is the Laurent polynomial matrix in (2.3). It is well known that there exist an n � n

Laurent polynomial matrix LðzÞ and a m � m Laurent polynomial matrix RðzÞ
satisfying detLðzÞ ¼ det RðzÞ ¼ 1; zAC; and LðzÞGTðzÞ ¼ DTðzÞRðzÞ; zAC; where

DðzÞ ¼ ðdjkðzÞÞ1pjpm; 1pkpn

is a Laurent polynomial matrix with the only nonzero entries djjðzÞ; j ¼ 1; 2;y; r;

and r being the largest number such that there exists r � r submatrix of GðzÞ whose
determinant is not identically zero. Moreover, djjðzÞ is a factor of djþ1jþ1ðzÞ; j ¼
1;y; r � 1:

As usual, the operator LðtÞ on ðcðZÞÞn is induced by matrix LðzÞ: Moreover, as

Lemma 3, we may conclude that LðtÞ is an invertible operator on ðS0ðZÞÞn: Similarly

RðtÞ is invertible on ðS0ðZÞÞm: Let b ¼ ðb1;y; bmÞT and f ¼ ðf1;y; fnÞT : Then we

may rewrite (2.6) as GTðtÞb ¼ f : Therefore, it is obvious that (2.6) has solution

bjAS0ðZÞ; 1pjpm; if and only if the system of difference equationsX
1pjpm

djkðtÞaj ¼ hk; 1pkpn; ð2:9Þ

has solution ajAS0ðZÞ; 1pjpm; where hk; 1pkpn; are given by

h ¼ ðh1;y; hnÞT ¼ LðtÞfAðS0ðZÞÞn:

We first conclude that hi ¼ 0 for i ¼ r þ 1;y; n: To this end denote

LðzÞ ¼ ðlikðzÞÞ1pi;kpn:

Recall that all entries in the last n � r rows of DTðzÞ are zero. So does LðzÞGT ðzÞ:
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This meansX
1pkpn

gjklik ¼ 0 81pjpm; i ¼ r þ 1;y; n:

It follows from (2.7) that

hi ¼
X

1pkpn

likðtÞfk ¼ 0; i ¼ r þ 1;y; n;

as claimed.

By Lemma 3, for any j; 1pjpr; there exists ajAS0ðZÞ satisfying djjðtÞaj ¼ hj :

Setting aj ¼ 0; j ¼ r þ 1;y;m; and b ¼ ðb1;y; bmÞT ¼ ðRðtÞÞ�1a; then

bjAS0ðZÞ; 1pjpm; satisfies (2.6). The proof is complete. &

To establish equality (2.8) in multivariate case we need the stability of the shifts
of F:

Theorem 5. Assume that F ¼ ffjg1pjpm is a finite set of compactly supported

distributions in S0ðRsÞ with stable shifts. Then (2.8) holds for any s.

Proof. Assume that fASðFÞ-S0ðRsÞ: There are n coefficient sequences

fkAcðZsÞ; 1pkpn; such that (2.5) holds. By Lemma 2, fkAS0ðZsÞ; 1pkpn: Since
the shifts of F are stable, the matrix GðzÞ given as in (2.4) has rank m for any zATs:
The system of difference equations (2.6) satisfies (2.7) for that fk; 1pkpn: Similar
to the proof of [6, Theorem 7.1] we can deduce that the system of difference

equations (2.6) is uniquely solvable for bjAS0ðZsÞ; 1pjpm: We refer to [6] for the

details. The proof is complete. &

3. Shift-invariant spaces in LpðRsÞð1ppp2Þ

We establish in this section the inclusive relation SðFÞ-LpðRsÞDXpðFÞ for

FALpðRsÞ; 1ppp2:

Assume throughout this section that the finite set FDLpðRsÞ; 1ppp2; consists of

compactly supported functions. We may consider the restriction of SðFÞ to the cube
½0; 1
s; instead of ð�1; 1Þs as in Section 2. Thus, in contrast to Section 2, the basis
ck; 1pkpn; of SðFÞj½0;1
s can be so chosen that ck; 1pkpn; are supported on

½0; 1
s: As a finite set C :¼ fckg1pkpn; it satisfies that, for any numbers

ckAC; 1pkpn;

X
1pkpn

ckck

�����
�����

�����
�����
Lp½0;1
s

F
X

1pkpn

jckjp
 !1=p

;
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from which it follows that, for any fkAcpðZsÞ; 1pkpn;

X
1pkpn

ck *
0fk

�����
�����

�����
�����
p

F
X

1pkpn

jjfkjjp

 !1=p

: ð3:1Þ

It is always true that SðFÞDSðCÞ: Instead of (2.2), it holds that for some m � n

finitely supported sequences cjk; 1pjpm; 1pkpn;

fj ¼
X

1pkpn

ck *
0cjk; 1pjpm: ð3:2Þ

Taking Fourier transform, we get

#fjðoÞ ¼
X

1pkpn

#ckðoÞgjkðeioÞ; 1pjpm; ð3:3Þ

whereas in Section 2, gjkðzÞ ¼
P

aAZs cjkðaÞz�a; 1pjpm; 1pkpn:

As in Section 2, an element f ¼
P

1pkpn ck *
0fkASðFÞ if and only if the system of

difference equations (2.6) is solvable or, equivalently, the implication relation (2.7)
holds.

Theorem 6. Let F be a finite set of compactly supported functions in LpðRsÞ: Then

SðFÞ-LpðRsÞDXpðFÞ; pA½1; 2
;

where XpðFÞ is as defined in (1.2).

Proof. Let fASðFÞ-LpðRsÞ: Then f ¼
P

1pkpn ck *
0fk with fkAlpðZsÞ; 1pkpn; by

(3.1). By Hausdorff–Young Theorem, for any 1pkpn; the series
P

aAZs fkðaÞeiao

converges in Lp0 ½0; 2p
s to a function, say, f̃kðoÞ; where p0 is the conjugate number of
p; 1=p þ 1=p0 ¼ 1:
On the other hand, since system (2.6) is solvable for bj; 1pjpm; it satisfies (2.7)

by Lemma 1. Therefore, for any Laurent polynomials qk; 1pkpn;X
1pkpn

qkgjk ¼ 0 81pjpm )
X

1pkpn

qkðe�ioÞf̃kðoÞ ¼ 0 a:e: o: ð3:4Þ

We shall prove that, for a.e. oA½0; 2p
s; the following system is solvable.X
1pjpm

gjkðeioÞaj ¼ f̃kðoÞ; 1pkpn: ð3:5Þ

Let N be the largest integer such that there exists a submatrix MðzÞ with size N of
GðzÞ satisfying det MðzÞ is not identically zero. As a Laurent polynomial
det MðzÞa0 for a.e. z: Without loss of any generality, we assume

MðzÞ ¼ ðgjkðzÞÞ1pj;kpN :

Given any 2pZs-periodic functions ajðoÞ;N þ 1pjpm; the systemX
1pjpN

gjkðeioÞaj ¼ f̃kðoÞ �
X

Nþ1pjpm

gjkðeioÞajðoÞ; 1pkpN ð3:6Þ
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has unique solution aj :¼ ajðoÞ; 1pjpN; for a.e. o: Clearly, ajðoÞ are also 2pZs-

periodic functions. Therefore, ajðoÞ; 1pjpm; solve the first N equations in (3.5).

It needs to verify that ajðoÞ; 1pjpm; satisfy the last n � N equations in (3.5). In

fact, for any k0; Nok0pn; by the definitions of N and MðzÞ; there exist Laurent
polynomials qk; 1pkpN; and qk0 ; not all zero, such that

qk0ðzÞgjk0ðzÞ þ
X

1pkpN

qkðzÞgjkðzÞ ¼ 0; zATs; 1pjpm: ð3:7Þ

It is clear that qk0 is not identically zero, for otherwise, the above equalities imply

det MðzÞ ¼ 0; zATs; a contradiction. It follows from Lemma 1 and (3.4) that

f̃k0ðoÞ ¼ �
X

1pkpN

qkðe�ioÞf̃kðoÞ=qk0ðe�ioÞ a:e: o: ð3:8Þ

By (3.7), (3.6) and (3.8), we obtain that for a.e. oX
1pjpm

gjk0ðeioÞajðoÞ

¼ �
X

1pkpN

X
1pjpm

gjkðeioÞajðoÞqkðe�ioÞ=qk0ðe�ioÞ

¼ �
X

1pkpN

qkðe�ioÞf̃kðoÞ=qk0ðe�ioÞ ¼ f̃k0ðoÞ;

as desired. It follows from equalities (3.3) and (3.5) that

f̂ ¼
X

1pjpm

#fjaj a:e: o: ð3:9Þ

The proof is complete. &

Corollary 7 (Jia [6, Theorem 4.1]). Let F be a finite set of compactly supported

functions in L2ðRsÞ: Then

SðFÞ-L2ðRsÞ ¼ S2ðFÞ:

Proof. Recall that S2ðFÞ is the smallest closed shift-invariant space containing F:
Since SðFÞ-L2ðRsÞ is a closed subspace of L2ðRsÞ containing F [6],
S2ðFÞDSðFÞ-L2ðRsÞ: By Theorem 6, it suffices to establish X2ðFÞDS2ðFÞ:
Suppose that gAS2ðFÞ>; the orthogonal complement of S2ðFÞ in L2ðRsÞ: ThenZ

Rs

fjðx � aÞgðxÞ dx ¼ 0; 1pjpm; aAZs:

Therefore, by Parseval identity, for any j; 1pjpm;X
aAZs

#fjðoþ 2paÞ #gðoþ 2paÞ ¼ 0 a:e: o:
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For any fAX2ðFÞ; there are some 2pZs-periodic functions aj; 1pjpm; such that

(3.9) holds. By the above equalitiesX
aAZs

f̂ðoþ 2paÞ #gðoþ 2paÞ ¼ 0 a:e: o:

This in turn gives
R
Rs f ðxÞgðxÞ dx ¼ 0: Therefore, gAX2ðFÞ>: It follows that

S2ðFÞ>DX2ðFÞ>: The proof is complete. &
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