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Abstract

This paper studies the structure of shift-invariant spaces. A characterization for the
univariate shift-invariant spaces of tempered distributions is given. In L, case, an inclusive
relation in terms of Fourier transform is established.
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1. Introduction

This paper studies the structure of shift-invariant spaces generated by finitely
many compactly supported distributions.

A linear space S of distributions is shift-invariant if, for any ¢ €S and any e Z*,
¢(-—a)es.

The space #(R’) of rapidly decreasing functions is the set of all infinitely
differentiable functions # such that, for any polynomial p(x) and aeZ’,,

p(x)01(x)| -0, |x[—>c0.
The dual space &(R*) is the space of tempered distributions. Similarly,
F(Z2°)<=/(2Z°) consists of all sequences that decay faster than the reciprocal of any
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polynomial sequence, where 7(Z*) is the set of all complex valued sequences defined
on Z*. A sequence b is in ¥'(Z°), the dual space of ¥ (Z*), if and only if b is of
polynomial growth, i.e., there exists a polynomial p satisfying |b(a)| < |p(a)|,a€Z’.

For a distribution ¢ and a sequence be/(Z*), the semi-convolution ¢ +'b is defined
by

px'b =" b(o)(- — o).

oae?’

It is well defined in case either ¢ is compactly supported or be/((Z*), where /((Z°) is
the subspace of finitely supported sequences in /(Z°). In both cases, it is clear that
¢='be Z'(R’), the space of distributions on Cg°(R*) of compactly supported and
infinitely differentiable functions.

Throughout this paper we assume that @ is a finite set consisting of
$;e (R, j=1,...,m. We define the linear space So(®) as the smallest shift-
invariant space containing @, that is,

SO((D):{ Z (ﬁj*,bji bjG/o(Z‘y), ]<]<m}

I<j<m

For 1<p< w0, by L,(R*) we denote the Banach space of all complex valued
measurable functions on R* such that [[f]], < co, where

i1, = (/. wx)v’dx)l/p, l<p<on,

and ||f||, is the essential supremum of f on R’. The Fourier transform f, for
feLi(R%), is defined by

flw)= [ f(x)e ™ do, weR.
-

The Fourier transform of a distribution in &'(R®) is defined by duality. It is well
known that the Fourier transform of a compactly supported distribution can be
extended to an entire function of zeC”.

For compactly supported distributions ¢;e9"(R°), j=1,...,m, the shift-
invariant space S(®)<=Z'(R’) is given by

S(q)) :{ Z d)j*/bj: bjG/(Zs), 1<]<m}

I1<j<m

Further, if @ consists of finitely many functions in L,(R*), denote by S,(®) the
closure of Sy(®) in L,(R®). It is the smallest closed shift-invariant space in L,(R®)
that contains @.

It is a meaningful problem, for a shift-invariant subspace S< S(®), to characterize
the elements of S. The following result on this direction is due to de Boor et al. [2],
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which holds for any finite set ¢ = L,(R?).

S (®) = {feLz([RiS): f=Y" djaj,a is 2n2°-periodic, 1<j<m}. (1.1)
I<j<m
The characterization (1.1) plays an important role in wavelet analysis as well as the
approximation order by S, (®), see [1-4] etc. In [6], Jia gave another proof of (1.1). It
was proved in [6] that, for P=L,(R%), S(P)nL,(R®) is closed in L,(R*) and that
S(@)OLQ(RA) = Sz(@) for (PQLz(RS).
It is well known that, for any pe(l,2] and any function f'e L,(R’), the Fourier
transform fAeLpf(Rs), where p’ is the conjugate number of p,1/p+ 1/p' = 1. The
analogue of the subspace in the right-hand side of (1.1) is defined as follows:

X,(?) = {feL,,([R{“'): f= Z d;aj,a; is 2nZ°-periodic, 1<j<m}. (1.2)

I<j<m

In this paper, we are interested in the shift-invariant spaces in ¢’'(R*) and L,(R*),
respectively. When @ consists of compactly supported distributions in %' (R*), we
give a characterization in Section 2 for fe¥'(R®) by the coefficients
bi(a), aeZ’,1<j<m, provided that either s = 1 or the shifts of @ are stable (see
below for the definition of stable). For #= L,(R*), 1<p<2, consisting of compactly
supported functions, we establish in Section 3 that S(®)nL,(R°) = X,(P). As a by
product we present a proof of the equality S(®) N Ly(R*) = S»2(P) for @<= L, (R?).

There are two methods to describe the structure of shift-invariant spaces. Fourier
transforms of ¢;, 1 <j<m, have been used extensively and mainly to characterize the
shift-invariant subspaces in L,(R*). Another method is to use semi-convolution. It
turns out that the semi-convolution is a powerful tool to deal with the non-L, case as
well as L, case. Our method is a combination of them.

2. Shift-invariant subspaces of tempered distributions

In this section we characterize the shift-invariant subspaces of .%’(R*) in terms of
coefficients in semi-convolution.

We first introduce some notions and results about the linear independence and
stability of the shifts of @. Let @ = {¢;},;,, be a finite set consisting of compactly
supported distributions. The shifts of @ are linearly independent (stable, respectively)
if for any b;e/(Z°)(¢  (Z*), respectively), 1 <j<m,

SN b — ) =0=bi(2) =0, 1<j<m, aeZ'. (2.1)
I<js<m ae?®
Let @ consist of finitely many compactly supported distributions ¢jey'(RS),
1<j<m. The restriction of S(®) to the cube Q = (—1,1)" is a finite dimensional
subspace of #'(R’). There exists a basis ;, 1<k<n, of S(®)|,. For any by e/(Z°),
Y i<k<n Vi*'bi = 0 if and only if by =0, 1<k<n.
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Obviously, there exists m x n finitely supported sequences cj, 1<j<m, 1<k<n,
such that for any o€ Z*

¢ +a)lo= Y @y (2.2)

1<k<n
Define the Laurent polynomials as

gi(z) = > ez, ze(C{0}), 1<j<m, 1<k<n, (2.3)

oaeZ’

and the matrix
G(z) = (gfk(z))1<j<n1.1<k<n’ ZE(C\{O})S' (2.4)

Recall from [7] that the linear independence (stability, respectively) of the shifts of
@ is equivalent to the fact that, for any ze (C\{0})*(ze T*, respectively) the matrix
G(z) has rank m.

The difference operator is a convenient tool. Given a € Z°, the operator t* on /(Z*)
is defined by t*f =f(-+«), f€/(Z*). A Laurent polynomial p(z) =), c(a)z*
induces a difference operator p(z) =", c(a)t™.

Denote by V the set of all the distributions that have the following representation:
there exist some f; €/(Z*), 1<k<n, such that for all aeZ’,

fE+D)lg= Y fil)yy. (2.5)

1<k<n

Clearly, S(®)< V. Moreover, a distribution f'e€ I with representation (2.5) belongs
to S(®) if and only if the system

Z gik(0)bj = fi, 1<k<n (2.6)

I<j<m

is solvable for b;, 1<j<m. The details are referred to, for example, [7].
Based on Toeplitz Theorem, Jia [5] characterized the solvability of (2.6) as follows.

Lemma 1 (Jia [5]). Assume that for any pair of (j, ), there are only finitely many pairs
of (k,a) such that cy(x— p)#0. Then the system of difference equations (2.6) is
solvable if and only if it satisfies that, for any Laurent polynomials qi(z), 1<k<n,

S g =0 Visism= > q(@)fi =0. 2.7)

I<k<n I<k<n

Our first result is a characterization of f € V' to be a distribution in .’ (R®) in terms
of its coefficient sequences f, 1<k<n. Its proof is elementary and, therefore,
omitted.

Lemma 2. Let feV be as given in (2.6) with the coefficients fi (o), 1<k<n, aeZ’.
Then f e % (R°) if and only if for any k, 1<k<n, fi.€ S (Z*).
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The following lemma is a well-known result.

Lemma 3. For any nonzero unmivariate Laurent polynomial q(z) and a sequence
ge ' (2), the difference equation q(t)a = g has solution ae &' (Z). The solution is
unique if and only if q(z) has no zero on T.

Theorem 4. Assume that ® = {¢j}1<j<m is a finite set of compactly supported
distributions in &' (R®). For univariate case, s = 1, we have

S(®) S (RY) = {f: f=> ¢j*’bj,bjey’(l‘v)l<j<m}. (2.8)

I<j<m

Proof. It is clear that for any bje 9'(Z°), 3, <, ¢;*'bieS(®) NS (R"). Assume
now feS(®)nS'(R’). Then feV. There exist coefficient sequences
fre S (Z),1<k<n, such that (2.5) holds. As we have known that, for such
Jr, 1<k<n, the system of difference equations (2.6) is solvable for some
b;, 1<j<m. Therefore the implication relation (2.7) holds.

We shall appeal to the results for the decompositions of (univariate) polynomial
matrices to establish the solvability of (2.6) for b;e (Z), 1<j<m. Recall that G(z)
is the Laurent polynomial matrix in (2.3). It is well known that there exist an n x n
Laurent polynomial matrix L(z) and a m x m Laurent polynomial matrix R(z)
satisfying det L(z) = det R(z) = 1,zeC, and L(z)G?(z) = DT(z)R(z),zeC, where

D(z) = (djk(z))lsjgm: 1<k<n

is a Laurent polynomial matrix with the only nonzero entries d;(z), j=1,2,...,r,
and r being the largest number such that there exists r x r submatrix of G(z) whose
determinant is not identically zero. Moreover, dj;(z) is a factor of di11(z), j =
I,...,r—1.

As usual, the operator L(z) on (£(Z))" is induced by matrix L(z). Moreover, as
Lemma 3, we may conclude that L(t) is an invertible operator on (%'(Z))". Similarly
R(z) is invertible on (&'(Z))". Let b= (b, ...,by)" and f = (fi, ..., f,)". Then we
may rewrite (2.6) as G7(t)b = f. Therefore, it is obvious that (2.6) has solution
bje #'(Z),1<j<m, if and only if the system of difference equations

" di(t)ay=he, 1<k<n, (2.9)

1<j<m
has solution a;€ &'(Z), 1<j<m, where h;, 1<k<n, are given by
h=(hy,... 0" =L e 2).
We first conclude that #; = 0 for i =r+ 1, ...,n. To this end denote
L(z) = (lik(z))1<i,k<n-

Recall that all entries in the last n — r rows of D7 (z) are zero. So does L(z)GT(z).
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This means

Z gile =0 VI<j<m, i=r+1,...,n

I1<k<n

It follows from (2.7) that
h = E:lﬂﬂﬁzo,i:r+huwm

1<k<n

as claimed.

By Lemma 3, for any j, 1<j<r, there exists a;e 9 (Z) satisfying dj(t)a; = h;.
Setting @, =0, j=r+1,....m, and b= (bl,...,b,,,)T: (R(r))fla7 then
bie ¥'(Z), 1<j<m, satisfies (2.6). The proof is complete. [

To establish equality (2.8) in multivariate case we need the stability of the shifts
of @.

Theorem 5. Assume that @ ={;}, <, is a finite set of compactly supported
distributions in &' (R®) with stable shifts. Then (2.8) holds for any s.

Proof. Assume that feS(®)n9'(R°). There are n coefficient sequences
Sfrel(Z*),1<k<n, such that (2.5) holds. By Lemma 2, f; € ¥'(Z°), 1<k<n. Since
the shifts of @ are stable, the matrix G(z) given as in (2.4) has rank m for any ze T°.
The system of difference equations (2.6) satisfies (2.7) for that f;, 1<k<n. Similar
to the proof of [6, Theorem 7.1] we can deduce that the system of difference
equations (2.6) is uniquely solvable for b;e ¥'(Z°), 1<j<m. We refer to [6] for the
details. The proof is complete. [

3. Shift-invariant spaces in L,(R’)(1<p<2)

We establish in this section the inclusive relation S(@)nL,(R")<X,(®) for
deL,(R), 1<p<2.

Assume throughout this section that the finite set = L,(R*), 1<p<2, consists of
compactly supported functions. We may consider the restriction of S(®) to the cube
[0,1]%, instead of (—1,1) as in Section 2. Thus, in contrast to Section 2, the basis
Vi, 1<k<n, of S(®)|(» can be so chosen that Y, 1<k<n, are supported on

[0,1]. As a finite set ¥ :={y;} 1<, it satisfies that, for any numbers

c€C, 1<k<n,

1/p

S oy a(z w) ,
1<k<n

1<k<n

L,[0,1)°
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from which it follows that, for any fie/,(Z%), 1<k <n,

1/p
> e &(Z |v;c|,,> : (3.1)

I<k<n I<k<n

P
It is always true that S(®)<=S(¥). Instead of (2.2), it holds that for some m x n
finitely supported sequences cj, 1 <j<m, 1<k<n,
b= X heen, 1<j%m (2
1<k<n
Taking Fourier transform, we get
bi(@) = > Yulo)gu(e”), 1<j<m, (33)
I<k<n

whereas in Section 2, gi(z) = >, cu(0)z™*, 1<j<m,1<k<n.

As in Section 2, an element ' = ), _, ., ¥, *'fr € S(®) if and only if the system of
difference equations (2.6) is solvable or, equivalently, the implication relation (2.7)
holds.

Theorem 6. Let @ be a finite set of compactly supported functions in L,(R*). Then
S(@)nL,(R) =X, (®), pell,2],
where X,(®) is as defined in (1.2).

Proof. Let feS(®)nL,(R"). Thenf =3, , ¥ *'fi with fyel,(Z°), 1<k<n, by
(3.1). By Hausdorff-Young Theorem, for any 1<k<n, the series >, _, fi(a)e™
converges in L, [0,27]* to a function, say, ﬂ(co), where p’ is the conjugate number of

p lp+1/p =1
On the other hand, since system (2.6) is solvable for b;, 1<j<m, it satisfies (2.7)
by Lemma 1. Therefore, for any Laurent polynomials ¢x, 1<k<n,

Z gk =0 VI<j<m = Z (e ) i (0) =0 ae. . (3.4)
1<k<n I<k<n
We shall prove that, for a.e. we|0,2xn]", the following system is solvable.
S gil@)a = filw), 1<k<n. (3.5)
I<j<m

Let N be the largest integer such that there exists a submatrix M (z) with size N of
G(z) satisfying det M(z) is not identically zero. As a Laurent polynomial
det M (z)#0 for a.e. z. Without loss of any generality, we assume

M(2) = (95 (2))1<jn<n-
Given any 2nZ*-periodic functions a;(w), N + 1<j<m, the system

Z gix(€)a; = fi(w) — Z gi(e?)aj(w), 1<k<N (3.6)

I<j<N N+1<j<m
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has unique solution ¢; = g;j(®), 1<j<N, for a.e. w. Clearly, a;j(w) are also 2nZ°-
periodic functions. Therefore, aj(w), 1<j<m, solve the first N equations in (3.5).

It needs to verify that a;(w), 1<j<m, satisfy the last n — N equations in (3.5). In
fact, for any ko, N <ko<n, by the definitions of N and M (z), there exist Laurent
polynomials gx, 1<k<N, and gy,, not all zero, such that

B (D (2) + Y a(2gi(2) =0, zeT, 1<j<m. (3-7)
1<k<N

It is clear that g, is not identically zero, for otherwise, the above equalities imply
det M(z) =0, zeT”, a contradiction. It follows from Lemma 1 and (3.4) that

Ju(@) ==Y ale™V(@)/qu(e) ae. o (3-8)

1<k<N
By (3.7), (3.6) and (3.8), we obtain that for a.e. w
> gik(e”)a(w)

I<j<m

== > Y gl@)a(@)ale™) /qr, ()

I<kSN I<j<m

== > a(e)()/a,(e7) = fi, (@),

I<k<N

as desired. It follows from equalities (3.3) and (3.5) that
f: Z qgjaj a.c. m. (39)

1<j<m
The proof is complete. [

Corollary 7 (Jia [6, Theorem 4.1]). Let @ be a finite set of compactly supported
Sfunctions in Ly(R®). Then

S(D) A Ly(RY) = S»().

Proof. Recall that S,(®) is the smallest closed shift-invariant space containing @.

Since S(®)NLy(R*) is a closed subspace of L(R*) containing @ [6],

SH(®) = S(®) N Ly(R*). By Theorem 6, it suffices to establish X2(®) =S, (P).
Suppose that ge S,(®)*, the orthogonal complement of S(®) in L,(R*). Then

¢i(x —a)g(x)dx =0, 1<j<m, aeZ’.
RF

Therefore, by Parseval identity, for any j, 1 <j<m,
Z d;j(w + 2”“)m =0 a.. o

oeZ’
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For any f € X>(®), there are some 2nZ°-periodic functions a;, 1<j<m, such that
(3.9) holds. By the above equalities

Z Aw+210)g(w+210) =0 ace. o.
oeZ*

This in turn gives [u f(x)g(x)dx =0. Therefore, geXo(@)*. 1t follows that
S»(®)* = X,(@)*". The proof is complete. [
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